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Classical Chernoff Bound

Asymptotic error rates in hypothesis testing: Chernoff (1952),
Sanov (1957) and Hoeffding (1965)

» Question is to choose between two possible explanations
(or models) called Hypothesis — H, H,

» Decision is based on a set of data collected from
observations.



Example:

Deciding whether a patient is healthy (hypothesis H,)
or has certain disease (hypothesis H, ) based on some
clinical tests.
H, —— working hypothesis or null hypothesis;

H, —— inhe alternative hypothesis.
Two types of errors:
(1) the rejection of a true null hypothesis (wrongly
concluding that a healthy patient has the disease)
probability ——=> p(I1H) = py()
(2) the acceptance of a false null hypothesis (failure to
diagnose the disease)

probability —— p(OI1H,)= p,(0)



Minimizing the errors

% Common approach: Minimize one of the errors by keeping
the other bounded by a constant (depending on the number of

observations)
% Another approach (Baysean-like) : Minimize a linear

combination of two error probabilities

P, =min[z, p(11Hy)+m p(OI H)]
=min[x, p,()+7; p;(0)]

%> 7 —> a priori probabilities assigned to
the occurrence of each hypothesis.



With N optimal tests, the probability of error P,  declines
exponentially as (considering equal a priori probabilities)

P, = Exp[- N C(py.p, )],

C(po,py)=—min oy log 3 pi®)p > (1)
b=0,1

The so called “Chernoff information” or Chernoff distance
C(n.py)1s expressed in terms of the Kullback-Leibler
divergence
C(po,pP1)=K(pgll pg)=K(p1ll py)
py(b)pi~* (b)
> po(B)pi *(b)

K(pgllpg)=2 pg(b)logl po(b)/ p«(b)]
b

psx(b) =

s* IS the value of s=[0]1] that minimizes the right-
hand side of (1).



Quantum Scenario

» States of quantum-mechanical objects are described by

density matrices.

» A density matrix is a self-adjoint, nonnegative operator of
a complex Hilbert space with a trace of 1.

> States are not directly observable: they can be measured
-- the outcome of a measurement treated as a random

variable.



» In the case of a countable number of outcomes,

every measurement can be represented by a set

{E.},i=12,.,k of nonnegative operators which are

required to add up to the identity operator: v 5 _ ;
i=1

» Each operator E; in the set corresponds to a
particular outcome of the measurement.

State — p
Probability of outcome i — Tr[pE;]

Projective measurements form an important
subclass: E; orthogonal projectors EE; =0, E;
5; — Kronecker delta symbol.



Suppose we are given a sample of Nidentical quantum
states, which are eitherPo or £1 with the prior probability
1/2. Task is to minimize the average probability of making
an incorrect decision about the state by devising a system
of measurements and a decision rule.



Take a two element POVM set: {Ey EjsEy+E =1}
Single copy minimum error probability is given by
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Quantum Statistics ———>  ability to vary
distributions over outcomes by choosing
appropriate measurements on given
guantum states.



Choose

p

k= Z‘ W+a><W+a
l

Eigenvectors of (p, — p,) corresponding to

positive/negative eigenvalues

T
k= %‘ T

............. so that



the maximum of

max g, g, Trl(Pg — P1(Eq —EDI=1 po = oy |

IS obtained.
Tracenorm Q

Therefore, the minimum error probability in
distinguishing the two states Ao- /A1 takes the

form , ,
P!y = 5[1—5 I po — P4 ||}

(Holevo-Helstrom result)



N copy error probability:

How does the error decline as N grows??



Finding the eigenvalues of  g,*" —p,*"
IS a hard computational task --- as the dimensionality

of the states grows rapidly with increasing sample
size N



Some special cases

(1) Both the states to be discriminated are pure:

» P1= ‘%X%‘

Po = ‘ Vo ><Wo

N copy error probability is given by

1 1
Pe(,g,)pure = 5|:1 o 5\/1 — KWO ‘Wl >‘2N i|

Asymptotical decline:

_ 1
0 108 P = 2108 (11

(2) If the states p, and p, commute, then
classical error decline rate holds.



Bounds on error:
Any two positive operators A, B satisfy the inequality

[ASBI‘S]z;—[Tr[ A+Bl-1A-B1,], 0<s<1

(Audenaert et. al., Phys. Rev. Lett. 98, 160501 (2007))

Choosing

1 1
A:—p()@N, B:—p1®N, we get

—Tr{(p ®N) (/0®N)I_S}>_ 1_%||P0®N_P1®N I

or PWN,0 <P, ocp= mln(z Tl‘[ﬂo P ]Nj

0<s<1



For s=1/2, gives Bhattacharya bound on error

I

P™, ocp= min| — Tr[,oO
0<s<I\ 2

Reduces to the results on
Quantum Chernoff error in special cases

Bound



When only one of the states is pure, i.e., =‘ %><%‘

1 1
P® cocs=—(wilpolwn)" =~ 1F(po. 1"

2
Fidelity §>

F%A>=(Tr{/\/ﬂn)\/ﬁ ])2 gz




Upper and lower bounds on
N-copy error probability

Fuch-Graaf:

1
1= yF(po. P11 Py =y IS 1= F(pg. p1):

®N):

F(po®Y . p FY(po.p))

I
- E[1—\/1—FN(/)0,/)1)] <P < JFV(py.p)




Quantum Bhattacharya Bounds

%(l— \/1—[Tr[,001/2 1/2]] j <P < llT 0,2 1/2]”

llT 0,%p 1/2]” P §>

e,OCB

Weaker upper bound
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Let Pin  be the input radiation state used to illuminate
the target.

Hypothesis 5 ~——> Target present:

The state of the radiation, received at the detector: p,
Hypothesis H —> Target absent:

The state of the radiation, received at the detector: 0



Quantum target Detection =) Ability to
distinguish between the states p,, p,
(i.e., choose between the Hypotheses Hy, H; )



SCIENCE VOL 321 12 SEPTEMBER 2008
Enhanced Sensitivity of Photodetection

via Quantum Illumination
Seth Lloyd

—

The use of quantum-mechanically entangled Llight
to illuminate objects can provide substantial
enhancements over unentangled Light for detecting
anol bmaging those objects tn the presence of high
levels of noise and Loss.
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An optical transmitter irradiates a target region containing a bright thermal-noise bath in which a low-
reflectivity object might be embedded. The light received from this region is used to decide whether the
object is present or absent. The performance achieved using a coherent-state transmitter is compared with
that of a quantum-illumination transmitter, i.e., one that employs the signal beam obtained from
spontaneous parametric down-conversion. By making the optimum joint measurement on the light
received from the target region together with the retained spontaneous parametric down-conversion idler
beam, the quantum-illumination system realizes a 6 dB advantage in the error-probability exponent over
the optimum reception coherent-state system. This advantage accrues despite there being no entanglement
between the light collected from the target region and the retained idler beam.
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FIG. 1 (color online). Upper bounds (solid curves) on the
target-detection error probabilities for coherent-state (Chernoff
bound) and guantum-illumination (Bhattacharyya bound) trans-
mitters with M transmitted modes each with Ng = (.01 photons
on average when « = 0.01 and Ng = 20. Also shown is the
lower bound (dashed curve) for the coherent-state case. which
(see below) also applies to all classical-state transmitters with
z‘:‘;’:]{cﬁmrﬁsm} = MNj. For large M, the classical-state lower
bound exceeds the quantum-illumination upper bound.



PHYSICAL REVIEW A 79, 062320 (2009)

Quantum target detection using entangled photons

A. R. Usha Devi'*** and A. K. R:ljagopal?'
]Depamuem of Physics, Bangalore University, Bangalore 560 056, India
*H. H. Wills Physics Laboratory, University of Bristol, Bristol BSS ITL, United Kingdom
3fﬂ5pf."'£? Institute Inc., McLean, Virginia 22101, USA
(Received 23 March 2009; published 19 June 2009)

We investigate performances of pure continuous variable states in discriminating thermal and identity chan-
nels by comparing their M-copy error-probability bounds. This offers us a simplified mathematical analysis for
quantum target detection with slightly modified features: the object—if it is present—perfectly reflects the
signal beam irradiating it, while thermal noise photons are returned to the receiver in its absence. This model
facilitates us to obtain analytic results on error-probability bounds, L.e., the quantum Chernoff bound and the
lower bound constructed from the Bhattacharya bound on M-copy discrimination error probabilities of some
important quantum states, like photon number states, N-photon maximally entangled (NOON) states, coherent
states and the entangled photons obtained from spontaneous parametric down conversion (SPDC). Comparing
the M-copy error-bounds, we identify that path-entangled states indeed offer enhanced sensitivity than the
photon number state system, when average signal photon number is small compared to the thermal noise level.
However, in the high signal-to-noise scenario, NOON states fail to be advantageous than the photon number
states. Entangled SPDC photon pairs too outperform conventional coherent state system in the low signal-to-
noise case. On the other hand, conventional coherent state system surpasses the performance sensitivity offered
by entangled photon pair, when the signal intensity is much above that of thermal noise. We find an analogous
performance regime in the lossy target detection (where the target is modeled as a weakly reflecting object) in
a high signal-to-noise scenario.
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FIG. 1. (Color online) Upper, lower bounds (dashed curves) on M-copy ertor probability with NOON states and photon number state’s
error probability (solid curve) for a thermal noise A=0.03; photon numbers in (a) n=100 and in (b) n=20. The lower bound lies above the
number state rtor probability in (a) implying that NOON states are not advantageous over photon number states. But, with smaller number
of photons [as illustrated in (b)), entangled NOON states indeed offer an enhanced sensitivity over number state system,
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FIG. 2: (color online) Logarithms of upper and lower hounds (dashed curves) on M-shot error-probability with entangled
photon pairs from SPDC source and that of coherent state system (solid curves) for (a) thermal noise N = (.75 and Ns = (.5
and in (b) Np =2, Ns = 30, plotted as a function of log;q[M]. The target detection with Ns < Np in (a) s illustrative of
the regime where entangled photon pairs show enhanced performance sensitivity over coherent light. But, it 1s seen from (b)
that when Ng >> N coherent state system 1s more advantageous than entangled SPDC photon pans,



Entangled states do reveal enhanced performance sensitivity over
unentangled ones 1in quantum target detection in certain regimes

-- 1dentified with the help of Quantum Chernoff bound on M-copy
error probabilities
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